Logo Search packages:      
Sourcecode: python-scipy-core version File versions  Download package

expr.h

/***************************************************************************
 * blitz/arrayexpr.h     Array<T,N> expression templates
 *
 * $Id: expr.h,v 1.2 2002/09/12 07:02:06 eric Exp $
 *
 * Copyright (C) 1997-2001 Todd Veldhuizen <tveldhui@oonumerics.org>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * Suggestions:          blitz-dev@oonumerics.org
 * Bugs:                 blitz-bugs@oonumerics.org
 *
 * For more information, please see the Blitz++ Home Page:
 *    http://oonumerics.org/blitz/
 *
 ***************************************************************************
 * $Log: expr.h,v $
 * Revision 1.2  2002/09/12 07:02:06  eric
 * major rewrite of weave.
 *
 * 0.
 * The underlying library code is significantly re-factored and simpler. There used to be a xxx_spec.py and xxx_info.py file for every group of type conversion classes.  The spec file held the python code that handled the conversion and the info file had most of the C code templates that were generated.  This proved pretty confusing in practice, so the two files have mostly been merged into the spec file.
 *
 * Also, there was quite a bit of code duplication running around.  The re-factoring was able to trim the standard conversion code base (excluding blitz and accelerate stuff) by about 40%.  This should be a huge maintainability and extensibility win.
 *
 * 1.
 * With multiple months of using Numeric arrays, I've found some of weave's "magic variable" names unwieldy and want to change them.  The following are the old declarations for an array x of Float32 type:
 *
 *         PyArrayObject* x = convert_to_numpy(...);
 *         float* x_data = (float*) x->data;
 *         int*   _Nx = x->dimensions;
 *         int*   _Sx = x->strides;
 *         int    _Dx = x->nd;
 *
 * The new declaration looks like this:
 *
 *         PyArrayObject* x_array = convert_to_numpy(...);
 *         float* x = (float*) x->data;
 *         int*   Nx = x->dimensions;
 *         int*   Sx = x->strides;
 *         int    Dx = x->nd;
 *
 * This is obviously not backward compatible, and will break some code (including a lot of mine).  It also makes inline() code more readable and natural to write.
 *
 * 2.
 * I've switched from CXX to Gordon McMillan's SCXX for list, tuples, and dictionaries.  I like CXX pretty well, but its use of advanced C++ (templates, etc.) caused some portability problems.  The SCXX library is similar to CXX but doesn't use templates at all.  This, like (1) is not an
 * API compatible change and requires repairing existing code.
 *
 * I have also thought about boost python, but it also makes heavy use of templates.  Moving to SCXX gets rid of almost all template usage for the standard type converters which should help portability.  std::complex and std::string from the STL are the only templates left.  Of course blitz still uses templates in a major way so weave.blitz will continue to be hard on compilers.
 *
 * I've actually considered scrapping the C++ classes for list, tuples, and
 * dictionaries, and just fall back to the standard Python C API because the classes are waaay slower than the raw API in many cases.  They are also more convenient and less error prone in many cases, so I've decided to stick with them.  The PyObject variable will always be made available for variable "x" under the name "py_x" for more speedy operations.  You'll definitely want to use these for anything that needs to be speedy.
 *
 * 3.
 * strings are converted to std::string now.  I found this to be the most useful type in for strings in my code.  Py::String was used previously.
 *
 * 4.
 * There are a number of reference count "errors" in some of the less tested conversion codes such as instance, module, etc.  I've cleaned most of these up.  I put errors in quotes here because I'm actually not positive that objects passed into "inline" really need reference counting applied to them.  The dictionaries passed in by inline() hold references to these objects so it doesn't seem that they could ever be garbage collected inadvertently.  Variables used by ext_tools, though, definitely need the reference counting done.  I don't think this is a major cost in speed, so it probably isn't worth getting rid of the ref count code.
 *
 * 5.
 * Unicode objects are now supported.  This was necessary to support rendering Unicode strings in the freetype wrappers for Chaco.
 *
 * 6.
 * blitz++ was upgraded to the latest CVS.  It compiles about twice as fast as the old blitz and looks like it supports a large number of compilers (though only gcc 2.95.3 is tested).  Compile times now take about 9 seconds on my 850 MHz PIII laptop.
 *
 * Revision 1.4  2002/07/23 23:14:09  jcumming
 * Added a four-argument templated constructor for _bz_ArrayExpr, which is
 * needed when building an Array expression containing a functor that takes
 * three arguments.  This is needed to support functorExpr.h, which allows
 * functors with up to three arguments.
 *
 * Revision 1.3  2002/03/07 14:36:47  patricg
 *
 * line 124
 * #ifdef BZ_NEW_EXPRESSION_TEMPLATES replaced by
 * #if defined(BZ_NEW_EXPRESSION_TEMPLATES) && ! defined(__MWERKS__)
 * line 134 added
 * #if !defined(__MWERKS__)
 * #endif
 * for Metrowerks code warrior compiler
 *
 * Revision 1.2  2001/01/24 20:22:50  tveldhui
 * Updated copyright date in headers.
 *
 * Revision 1.1.1.1  2000/06/19 12:26:13  tveldhui
 * Imported sources
 *
 * Revision 1.2  1998/03/14 00:04:47  tveldhui
 * 0.2-alpha-05
 *
 * Revision 1.1  1997/07/16 14:51:20  tveldhui
 * Update: Alpha release 0.2 (Arrays)
 *
 */

#ifndef BZ_ARRAYEXPR_H
#define BZ_ARRAYEXPR_H

#ifndef BZ_ARRAY_H
 #error <blitz/array/expr.h> must be included via <blitz/array.h>
#endif

#ifndef BZ_OPS_H
 #include <blitz/ops.h>
#endif

#ifndef BZ_PRETTYPRINT_H
 #include <blitz/prettyprint.h>
#endif

#ifndef BZ_SHAPECHECK_H
 #include <blitz/shapecheck.h>
#endif

#ifndef BZ_NUMINQUIRE_H
 #include <blitz/numinquire.h>
#endif

/*
 * The array expression templates iterator interface is followed by
 * these classes:
 *
 * FastArrayIterator          <blitz/array/fastiter.h>
 * _bz_ArrayExpr              <blitz/array/expr.h>
 * _bz_ArrayExprOp                    "
 * _bz_ArrayExprUnaryOp               "
 * _bz_ArrayExprConstant              "
 * _bz_ArrayMap               <blitz/array/map.h>
 * _bz_ArrayExprReduce        <blitz/array/reduce.h>
 * IndexPlaceholder           <blitz/indexexpr.h>
 */

BZ_NAMESPACE(blitz)

template<class T1, class T2>
class _bz_ExprPair {
public:
    _bz_ExprPair(const T1& a, const T2& b)
        : first_(a), second_(b)
    { }

    const T1& first() const
    { return first_; }

    const T2& second() const
    { return second_; }

protected:
    T1 first_;
    T2 second_;
};

template<class T1, class T2>
inline _bz_ExprPair<T1,T2> makeExprPair(const T1& a, const T2& b)
{
    return _bz_ExprPair<T1,T2>(a,b);
}

template<class P_expr>
class _bz_ArrayExpr 
#ifdef BZ_NEW_EXPRESSION_TEMPLATES
    : public ETBase<_bz_ArrayExpr<P_expr> >
#endif
{

public:
    typedef P_expr T_expr;
    typedef _bz_typename T_expr::T_numtype T_numtype;
    typedef T_expr T_ctorArg1;
    typedef int    T_ctorArg2;    // dummy

    enum { numArrayOperands = BZ_ENUM_CAST(P_expr::numArrayOperands),
        numIndexPlaceholders = BZ_ENUM_CAST(P_expr::numIndexPlaceholders),
        rank = BZ_ENUM_CAST(P_expr::rank) };

    _bz_ArrayExpr(const _bz_ArrayExpr<P_expr>& a)
        : iter_(a.iter_)
    { }

#if defined(BZ_NEW_EXPRESSION_TEMPLATES) && ! defined(__MWERKS__)
    template<class T>
    _bz_ArrayExpr(const T& a)
        : iter_(a)
    { }
#else

    _bz_ArrayExpr(BZ_ETPARM(T_expr) a)
        : iter_(a)
    { }
#if !defined(__MWERKS__)
    _bz_ArrayExpr(BZ_ETPARM(_bz_typename T_expr::T_ctorArg1) a)
        : iter_(a)
    { }
#endif
#endif

    template<class T1, class T2>
    _bz_ArrayExpr(BZ_ETPARM(T1) a, BZ_ETPARM(T2) b)
        : iter_(a, b)
    { }

    template<class T1, class T2, class T3>
    _bz_ArrayExpr(BZ_ETPARM(T1) a, BZ_ETPARM(T2) b, BZ_ETPARM(T3) c)
        : iter_(a, b, c)
    { }

    template<class T1, class T2, class T3, class T4>
    _bz_ArrayExpr(BZ_ETPARM(T1) a, BZ_ETPARM(T2) b, BZ_ETPARM(T3) c,
        BZ_ETPARM(T4) d) : iter_(a, b, c, d)
    { }

    template<class T1, class T2>
    _bz_ArrayExpr(const _bz_ExprPair<T1,T2>& pair)
        : iter_(pair.first(), pair.second())
    { }

    T_numtype operator*()
    { return *iter_; }

#ifdef BZ_ARRAY_EXPR_PASS_INDEX_BY_VALUE
    template<int N_rank>
    T_numtype operator()(TinyVector<int, N_rank> i)
    { return iter_(i); }
#else
    template<int N_rank>
    T_numtype operator()(const TinyVector<int, N_rank>& i)
    { return iter_(i); }
#endif

    int ascending(int rank)
    { return iter_.ascending(rank); }

    int ordering(int rank)
    { return iter_.ordering(rank); }

    int lbound(int rank)
    { return iter_.lbound(rank); }

    int ubound(int rank)
    { return iter_.ubound(rank); }

    void push(int position)
    { iter_.push(position); }

    void pop(int position)
    { iter_.pop(position); }

    void advance()
    { iter_.advance(); }

    void advance(int n)
    { iter_.advance(n); }

    void loadStride(int rank)
    { iter_.loadStride(rank); }

    _bz_bool isUnitStride(int rank) const
    { return iter_.isUnitStride(rank); }

    void advanceUnitStride()
    { iter_.advanceUnitStride(); }

    _bz_bool canCollapse(int outerLoopRank, int innerLoopRank) const
    { 
        // BZ_DEBUG_MESSAGE("_bz_ArrayExpr<>::canCollapse()");
        return iter_.canCollapse(outerLoopRank, innerLoopRank); 
    }

    T_numtype operator[](int i)
    { return iter_[i]; }

    T_numtype fastRead(int i)
    { return iter_.fastRead(i); }

    int suggestStride(int rank) const
    { return iter_.suggestStride(rank); }

    _bz_bool isStride(int rank, int stride) const
    { return iter_.isStride(rank,stride); }

    void prettyPrint(string& str) const
    {
        prettyPrintFormat format(_bz_true);  // Terse formatting by default
        iter_.prettyPrint(str, format);
    }

    void prettyPrint(string& str, prettyPrintFormat& format) const
    { iter_.prettyPrint(str, format); }

    template<class T_shape>
    _bz_bool shapeCheck(const T_shape& shape)
    { return iter_.shapeCheck(shape); }

    template<int N_rank>
    void moveTo(const TinyVector<int,N_rank>& i)
    {
        iter_.moveTo(i);
    }

protected:
    _bz_ArrayExpr() { }

    T_expr iter_;
};

struct bounds {
    static int compute_ascending(int rank, int ascending1, int ascending2)
    {
        // The value INT_MIN indicates that there are no arrays
        // in a subtree of the expression.  This logic returns
        // whichever ascending is available.  If there are two
        // conflicting ascending values, this is an error.

        if (ascending1 == ascending2)
            return ascending1;
        else if (ascending1 == INT_MIN)
            return ascending2;
        else if (ascending2 == INT_MIN)
            return ascending1;

        BZ_DEBUG_MESSAGE("Two array operands have different"
            << endl << "ascending flags: for rank " << rank 
            << ", the flags are " << ascending1 << " and " 
            << ascending2 << endl);
        BZ_PRE_FAIL;
        return 0;
    }

    static int compute_ordering(int rank, int order1, int order2)
    {
        // The value INT_MIN indicates that there are no arrays
        // in a subtree of the expression.  This logic returns
        // whichever ordering is available.  If there are two
        // conflicting ordering values, this is an error.

        if (order1 == order2)
            return order1;
        else if (order1 == INT_MIN)
            return order2;
        else if (order2 == INT_MIN)
            return order1;

        BZ_DEBUG_MESSAGE("Two array operands have different"
            << endl << "orders: for rank " << rank << ", the orders are "
            << order1 << " and " << order2 << endl);
        BZ_PRE_FAIL;
        return 0;
    }

    static int compute_lbound(int rank, int lbound1, int lbound2)
    {
        // The value INT_MIN indicates that there are no arrays
        // in a subtree of the expression.  This logic returns
        // whichever lbound is available.  If there are two
        // conflicting lbound values, this is an error.

        if (lbound1 == lbound2)
            return lbound1;
        else if (lbound1 == INT_MIN)
            return lbound2;
        else if (lbound2 == INT_MIN)
            return lbound1;

        BZ_DEBUG_MESSAGE("Two array operands have different"
            << endl << "lower bounds: in rank " << rank << ", the bounds are "
            << lbound1 << " and " << lbound2 << endl);
        BZ_PRE_FAIL;
        return 0;
    }

    static int compute_ubound(int rank, int ubound1, int ubound2)
    {
        // The value INT_MAX indicates that there are no arrays
        // in a subtree of the expression.  This logic returns
        // whichever ubound is available.  If there are two
        // conflicting ubound values, this is an error.

        if (ubound1 == ubound2)
            return ubound1;
        else if (ubound1 == INT_MAX)
            return ubound2;
        else if (ubound2 == INT_MAX)
            return ubound1;

        BZ_DEBUG_MESSAGE("Two array operands have different"
            << endl << "upper bounds: in rank " << rank << ", the bounds are "
            << ubound1 << " and " << ubound2 << endl);
        BZ_PRE_FAIL;
        return 0;
    }

};

template<class P_expr1, class P_expr2, class P_op>
class _bz_ArrayExprOp {
public:
    typedef P_expr1 T_expr1;
    typedef P_expr2 T_expr2;
    typedef _bz_typename T_expr1::T_numtype T_numtype1;
    typedef _bz_typename T_expr2::T_numtype T_numtype2;
    typedef _bz_typename P_op::T_numtype T_numtype;
    typedef P_op T_op;
    typedef T_expr1 T_ctorArg1;
    typedef T_expr2 T_ctorArg2;

    enum { numArrayOperands = BZ_ENUM_CAST(P_expr1::numArrayOperands)
                            + BZ_ENUM_CAST(P_expr2::numArrayOperands),
           numIndexPlaceholders = BZ_ENUM_CAST(P_expr1::numIndexPlaceholders)
                            + BZ_ENUM_CAST(P_expr2::numIndexPlaceholders),
           rank = (BZ_ENUM_CAST(P_expr1::rank) > BZ_ENUM_CAST(P_expr2::rank)) 
                ? BZ_ENUM_CAST(P_expr1::rank) : BZ_ENUM_CAST(P_expr2::rank)
    };

    _bz_ArrayExprOp(const _bz_ArrayExprOp<P_expr1, P_expr2, P_op>& a)
        : iter1_(a.iter1_), iter2_(a.iter2_)
    { }

    template<class T1, class T2>
    _bz_ArrayExprOp(BZ_ETPARM(T1) a, BZ_ETPARM(T2) b)
        : iter1_(a), iter2_(b)
    { }

//    _bz_ArrayExprOp(T_expr1 a, T_expr2 b)
//       : iter1_(a), iter2_(b)
//    { }

    T_numtype operator*()
    { return T_op::apply(*iter1_, *iter2_); }

#ifdef BZ_ARRAY_EXPR_PASS_INDEX_BY_VALUE
    template<int N_rank>
    T_numtype operator()(TinyVector<int, N_rank> i)
    { return T_op::apply(iter1_(i), iter2_(i)); }
#else
    template<int N_rank>
    T_numtype operator()(const TinyVector<int, N_rank>& i)
    { return T_op::apply(iter1_(i), iter2_(i)); }
#endif

    int ascending(int rank)
    {
        return bounds::compute_ascending(rank, iter1_.ascending(rank),
            iter2_.ascending(rank));
    }

    int ordering(int rank)
    {
        return bounds::compute_ordering(rank, iter1_.ordering(rank),
            iter2_.ordering(rank));
    }

    int lbound(int rank)
    { 
        return bounds::compute_lbound(rank, iter1_.lbound(rank),
            iter2_.lbound(rank));
    }

    int ubound(int rank)
    {
        return bounds::compute_ubound(rank, iter1_.ubound(rank),
            iter2_.ubound(rank));
    }

    void push(int position)
    { 
        iter1_.push(position); 
        iter2_.push(position);
    }

    void pop(int position)
    { 
        iter1_.pop(position); 
        iter2_.pop(position);
    }

    void advance()
    { 
        iter1_.advance(); 
        iter2_.advance();
    }

    void advance(int n)
    {
        iter1_.advance(n);
        iter2_.advance(n);
    }

    void loadStride(int rank)
    { 
        iter1_.loadStride(rank); 
        iter2_.loadStride(rank);
    }
    
    _bz_bool isUnitStride(int rank) const
    { return iter1_.isUnitStride(rank) && iter2_.isUnitStride(rank); }

    void advanceUnitStride()
    { 
        iter1_.advanceUnitStride(); 
        iter2_.advanceUnitStride();
    }

    _bz_bool canCollapse(int outerLoopRank, int innerLoopRank) const
    { 
        // BZ_DEBUG_MESSAGE("_bz_ArrayExprOp<>::canCollapse");
        return iter1_.canCollapse(outerLoopRank, innerLoopRank)
            && iter2_.canCollapse(outerLoopRank, innerLoopRank);
    } 

    T_numtype operator[](int i)
    { return T_op::apply(iter1_[i], iter2_[i]); }

    T_numtype fastRead(int i)
    { return T_op::apply(iter1_.fastRead(i), iter2_.fastRead(i)); }

    int suggestStride(int rank) const
    {
        int stride1 = iter1_.suggestStride(rank);
        int stride2 = iter2_.suggestStride(rank);
        return (stride1 > stride2) ? stride1 : stride2;
    }

    _bz_bool isStride(int rank, int stride) const
    {
        return iter1_.isStride(rank,stride) && iter2_.isStride(rank,stride);
    }

    template<int N_rank>
    void moveTo(const TinyVector<int,N_rank>& i)
    {
        iter1_.moveTo(i);
        iter2_.moveTo(i);
    }

    void prettyPrint(string& str, prettyPrintFormat& format) const
    {
        T_op::prettyPrint(str, format, iter1_, iter2_);
    }

    template<class T_shape>
    _bz_bool shapeCheck(const T_shape& shape)
    { return iter1_.shapeCheck(shape) && iter2_.shapeCheck(shape); }

protected:
    _bz_ArrayExprOp() { }

    T_expr1 iter1_;
    T_expr2 iter2_; 
};

template<class P_expr, class P_op>
class _bz_ArrayExprUnaryOp {
public:
    typedef P_expr T_expr;
    typedef _bz_typename P_expr::T_numtype T_numtype1;
    typedef _bz_typename P_op::T_numtype T_numtype;
    typedef P_op T_op;
    typedef T_expr T_ctorArg1;
    typedef int    T_ctorArg2;    // dummy

    enum { numArrayOperands = BZ_ENUM_CAST(T_expr::numArrayOperands),
        numIndexPlaceholders = BZ_ENUM_CAST(T_expr::numIndexPlaceholders),
        rank = BZ_ENUM_CAST(T_expr::rank) };

    _bz_ArrayExprUnaryOp(const _bz_ArrayExprUnaryOp<T_expr, P_op>& a)
        : iter_(a.iter_)
    { }

    _bz_ArrayExprUnaryOp(BZ_ETPARM(T_expr) a)
        : iter_(a)
    { }

    _bz_ArrayExprUnaryOp(_bz_typename T_expr::T_ctorArg1 a)
        : iter_(a)
    { }

#if BZ_TEMPLATE_CTOR_DOESNT_CAUSE_HAVOC
    template<class T1>
    _bz_explicit _bz_ArrayExprUnaryOp(BZ_ETPARM(T1) a)
        : iter_(a)
    { }
#endif

    int ascending(int rank)
    { return iter_.ascending(rank); }

    int ordering(int rank)
    { return iter_.ordering(rank); }

    int lbound(int rank)
    { return iter_.lbound(rank); }

    int ubound(int rank)
    { return iter_.ubound(rank); }

    T_numtype operator*()
    { return T_op::apply(*iter_); }

#ifdef BZ_ARRAY_EXPR_PASS_INDEX_BY_VALUE
    template<int N_rank>
    T_numtype operator()(TinyVector<int, N_rank> i)
    { return T_op::apply(iter_(i)); }
#else
    template<int N_rank>
    T_numtype operator()(const TinyVector<int, N_rank>& i)
    { return T_op::apply(iter_(i)); }
#endif

    void push(int position)
    {
        iter_.push(position);
    }

    void pop(int position)
    {
        iter_.pop(position);
    }

    void advance()
    {
        iter_.advance();
    }

    void advance(int n)
    {
        iter_.advance(n);
    }

    void loadStride(int rank)
    {
        iter_.loadStride(rank);
    }

    _bz_bool isUnitStride(int rank) const
    { return iter_.isUnitStride(rank); }

    void advanceUnitStride()
    {
        iter_.advanceUnitStride();
    }

    template<int N_rank>
    void moveTo(const TinyVector<int,N_rank>& i)
    {
        iter_.moveTo(i);
    }

    _bz_bool canCollapse(int outerLoopRank, int innerLoopRank) const
    { 
        // BZ_DEBUG_MESSAGE("_bz_ArrayExprUnaryOp<>::canCollapse");
        return iter_.canCollapse(outerLoopRank, innerLoopRank); 
    }

    T_numtype operator[](int i)
    { return T_op::apply(iter_[i]); }

    T_numtype fastRead(int i)
    { return T_op::apply(iter_.fastRead(i)); }

    int suggestStride(int rank) const
    { return iter_.suggestStride(rank); }

    _bz_bool isStride(int rank, int stride) const
    { return iter_.isStride(rank,stride); }

    void prettyPrint(string& str, prettyPrintFormat& format) const
    { T_op::prettyPrint(str, format, iter_); }

    template<class T_shape>
    _bz_bool shapeCheck(const T_shape& shape)
    { return iter_.shapeCheck(shape); }

protected:
    _bz_ArrayExprUnaryOp() { }

    T_expr iter_;
};

template<class P_numtype>
class _bz_ArrayExprConstant {
public:
    typedef P_numtype T_numtype;
    typedef T_numtype T_ctorArg1;
    typedef int       T_ctorArg2;    // dummy

    enum { numArrayOperands = 0, numIndexPlaceholders = 0, rank = 0 };

    _bz_ArrayExprConstant(const _bz_ArrayExprConstant<T_numtype>& a)
        : value_(a.value_)
    { }

    _bz_ArrayExprConstant(T_numtype value)
        : value_(BZ_NO_PROPAGATE(value))
    { 
    }

    // tiny() and huge() return the smallest and largest representable
    // integer values.  See <blitz/numinquire.h>
    // NEEDS_WORK: use tiny(int()) once numeric_limits<T> available on
    // all platforms

    int ascending(int)
    { return INT_MIN; }

    int ordering(int)
    { return INT_MIN; }

    int lbound(int)
    { return INT_MIN; }

    int ubound(int)
    { return INT_MAX; }
    // NEEDS_WORK: use huge(int()) once numeric_limits<T> available on
    // all platforms

    T_numtype operator*()
    { return value_; }

#ifdef BZ_ARRAY_EXPR_PASS_INDEX_BY_VALUE
    template<int N_rank>
    T_numtype operator()(TinyVector<int,N_rank>)
    { return value_; }
#else
    template<int N_rank>
    T_numtype operator()(const TinyVector<int,N_rank>&)
    { return value_; }
#endif

    void push(int) { }
    void pop(int) { }
    void advance() { }
    void advance(int) { }
    void loadStride(int) { }

    _bz_bool isUnitStride(int rank) const
    { return _bz_true; }

    void advanceUnitStride()
    { }

    _bz_bool canCollapse(int,int) const 
    { return _bz_true; }

    T_numtype operator[](int)
    { return value_; }

    T_numtype fastRead(int)
    { return value_; }

    int suggestStride(int) const
    { return 1; }

    _bz_bool isStride(int,int) const
    { return _bz_true; }

    template<int N_rank>
    void moveTo(const TinyVector<int,N_rank>& i)
    {
    }

    void prettyPrint(string& str, prettyPrintFormat& format) const
    {
        if (format.tersePrintingSelected())
            str += format.nextScalarOperandSymbol();
        else
            str += BZ_DEBUG_TEMPLATE_AS_STRING_LITERAL(T_numtype);
    }

    template<class T_shape>
    _bz_bool shapeCheck(const T_shape&)
    { return _bz_true; }

protected:
    _bz_ArrayExprConstant() { }

    T_numtype value_;
};

BZ_NAMESPACE_END

#include <blitz/array/asexpr.h>

#endif // BZ_ARRAYEXPR_H


Generated by  Doxygen 1.6.0   Back to index